

Prototype for a Carbon Productivity Tool: Framework, metrics and methodologies

ANNEXES TO METHODOLOGY DOCUMENT

Annex 1: Suite of Carbon Productivity metrics considered in prototype

1

Measuring carbon productivity – prototype metrics

Carbon productivity metrics are defined according to the purpose and application

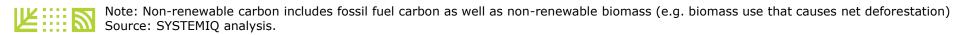
CARBON PRODUCTIVITY		PURPOSE / APPLICATION	METRICS	
		Measure financial value derived from fossil fuel carbon	Financial Return on Carbon Employed Revenue (€)	
Carbon	= Value created	Product life cycle, company	Non-renewable carbon input (Barrels of oil equiv.)	
productivity	Non-renewable carbon as input for energy and feedstock	Measure environmental value derived from fossil fuel carbon (carbon saving in use/after-use) <i>Product life cycle</i>	 Environmental Return on Carbon Employed Non-renewable carbon use avoided compared to "industry standard" (BOE) *100 Non-renewable carbon input (Barrels of oil equiv.) 	

Note: Non-renewable carbon includes fossil fuel carbon as well as non-renewable biomass (e.g. biomass use that causes net deforestation) Source: SYSTEMIQ analysis.

2

Measuring carbon productivity – a suite of metrics for different applications (1)

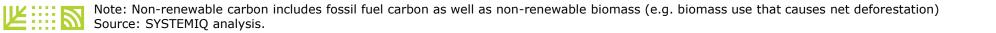
Additional metrics are proposed for different applications and for further development


PURPOSE / APPLICATION	METRICS	Notes
Measure financial value derived from fossil fuel carbon Product life cycle, company	Financial Return on Carbon Employed - <u>Revenue</u> Revenue (€) Non-renewable carbon input (Barrels of oil equiv.)	 Selected metric for prototype tool Accessible and comparable basis for FROCE Includes costs, wages and taxes that can be considered as wider benefits to society, employees and supply chain Not measuring value (profit) for a company
	Financial Return on Carbon Employed - Earnings EBIT (€) ¹ Non-renewable carbon input (Barrels of oil equiv.)	 Widely used measure for company earnings (profit) that could provide a basis for internal company analysis on value created per unit of fossil carbon Not always accessible or comparable between companies and does not include wider benefits to society (wages and supply chain)
	Financial Return on Carbon Employed – <u>Revenue + Social Cost</u> Revenue + monetised social cost (€) Non-renewable carbon input (Barrels of oil equiv.)	 Monetises environmental cost of product life cycles e.g. via open source Environmental Profit and Loss (EPL) accounting Complete measure of net societal benefits derived from fossil carbon High effort and cost to compile data

Measuring carbon productivity – a suite of metrics for different applications (2)

Additional metrics are proposed for different applications and for further development

PURPOSE / APPLICATION	METRICS	Notes
Measure environmental value derived from fossil fuel carbon (carbon saving in use/after-use) <i>Product life cycle</i>	Environmental Return on Carbon Employed – <u>Relative Over Absolute</u> Non-renewable carbon use avoided compared to "industry standard" (BOE) * 100 Non-renewable carbon input (Barrels of oil equiv.)	 Selected metric for prototype tool Widely applicable metric: >0 means product has lifetime carbon benefits; >100 means it is net positive Consistent with LCA approach Relies on choice of comparison product Relative / Absolute metric not consistent with common financial metrics
	 Environmental Return on Carbon Employed <u>Relative Over Relative</u> Non-renewable carbon use avoided in use and after-use compared to "industry standard" Additional non-renewable carbon consumption in production (Barrels of oil equiv.) 	 Where this is applicable, it provides a clear and intuitive metric that is consistent with common financial metrics However, only applicable to products that have a higher consumption of fossil carbon during production phase
	Environmental Return on Carbon Employed – <u>Absolute over Absolute</u> Net non-renewable carbon consumption in use and after-use Non-renewable carbon consumption in production (Barrels of oil equiv.)	 Highlights major driver of carbon consumption in life cycle to target improvement initiatives As a stand-alone ratio, it does not provide information on magnitude of carbon consumption in either phase of life cycle



Δ

Measuring carbon productivity – a suite of metrics for different applications (3)

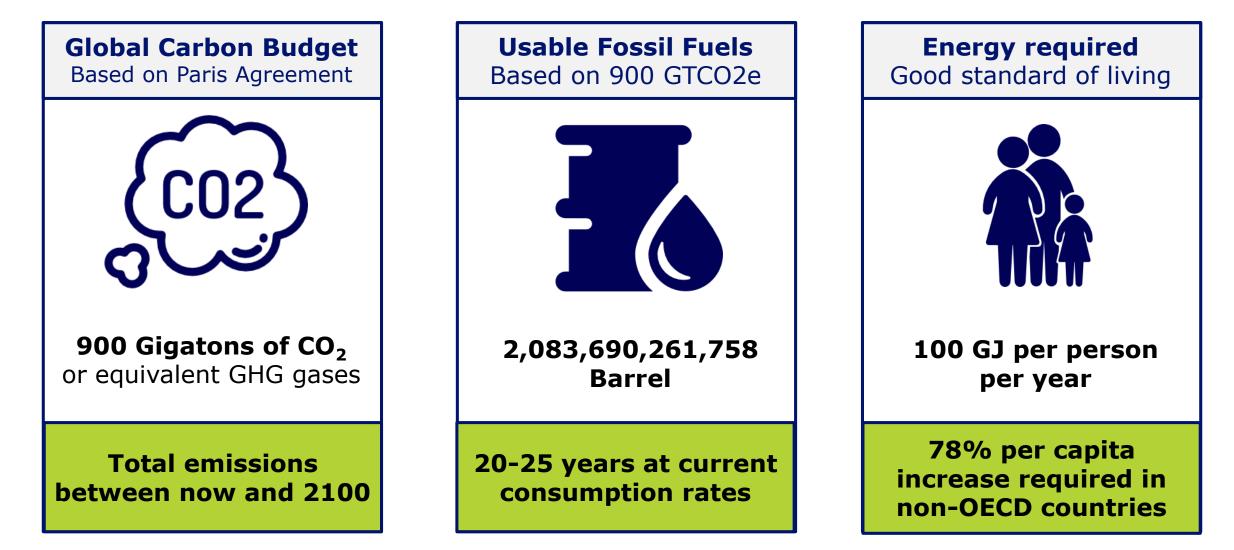
Additional metrics are proposed for different applications and for further development

PURPOSE / APPLICATION	METRICS	Notes
Measure environmental value derived from fossil fuel carbon (carbon saving in use/after-use) <i>Product life cycle</i>	Environmental Return on Carbon Employed – <u>Net Life Cycle Consumption</u> Net consumption of non-renewable carbon attributable to product across its full life cycle (production + use + after-use)	 Comparable metric that does not rely on choice of "industry standard" comparison Risk that this is perceived as "shifting blame" or double-counting between companies - not consistent with guidelines on reporting avoided emissions, which recommend differentiation by stage of value chain
	Environmental Return on Carbon Employed – <u>Carbon Payback Period (Relative)</u> Additional non-renewable carbon consumption in production, relative to industry standard Non-renewable carbon consumption avoided per year of use, relative to industry standard	 Clear and intuitive metric for communicating about use phase benefits of a product However, only applicable to products that have a higher consumption of fossil carbon during production phase Does not capture benefits in after-use however could be developed further
	Environmental Return on Carbon Employed – <u>Carbon Payback Period (Absolute)</u> Non-renewable carbon consumption in production (Barrels of oil equiv.) Non-renewable carbon consumption avoided per year of use, relative to industry standard	 Clear and intuitive metric for communicating about use phase benefits of a product Only applicable to products that repay their total carbon consumption during use phase Does not capture benefits in after-use however this metric could be developed further

5

Measuring carbon productivity – a suite of metrics for different applications (4)

Additional metrics are proposed for different applications and for further development


PURPOSE / APPLICATION	METRICS	Notes	
Measure environmental value derived from fossil fuel carbon (carbon saving in use/after-use) <i>Product life cycle</i>	Environmental Return on Carbon Employed - Productivity of fossil carbon input Non-renewable carbon use avoided compared to "industry standard" (BOE) Non-renewable carbon input (Barrels of oil equiv.)	 Alternative method to calculate and communicate the relative over absolute ratio, expressed as a percentage Industry standard product would have 100% return on carbon employed and improved product would have a return above 100% >200% indicates a "net positive" product that repays its own carbon debt during use and after-use Consistent with LCA approach Relies on choice of comparison product 	

6

Maintaining global climate change below 2°C requires a radical shift

To meet 2°C target and Global Goals (SDGs), we need to derive more value from less fossil carbon

Sources: Carbon Tracker Initiative (2013). Unburnable Carbon 2013: Wasted capital and stranded assets. Carbon Tracker and Grantham Research Institute; EIA (2016). Monthly Energy Review; EPA (2015). Inventory of U.S. Greenhouse Gas Emissions and Sinks; The Energy Transition Commission (2017); icons made by Freepic from www.flaticon.com.

SYSTEMI

Benefits from applying a resource productivity approach to fossil fuel carbon

_	_		_
D	R/	١F	Т
	• • •	••	•

FROM"Carbon is the enemy"	TO"Carbon as a source of value"
Decarbonisation	Carbon management
Mitigation and reduction	Productivity, value creation and re-coupling to new sources of carbon
Narrow view of GHG emissions from company-owned facilities ¹	Life-cycle and circular view of carbon flows related to a product, including use-phase benefits
Concept divide between climate change mitigation and circular economy	Coherent efforts reconciling climate mitigation and circular economy
One-company carbon efficiency focus	Innovation and collaboration between companies along a product value chain
Zero growth as ultimate recourse	Growth de-coupled from fossil carbon as ultimate recourse

1 Analysis of ET Global 100 data shows that Scope 1 and 2 GHG emissions (emissions related to company-owned facilities and direct energy sourcing) make up less than 30% of the life-cycle emissions of a product, and even for those companies reporting, only one-third report more than five Scope 3 emissions categories

SYSTEMIQ

A resource productivity approach to carbon: Introduction

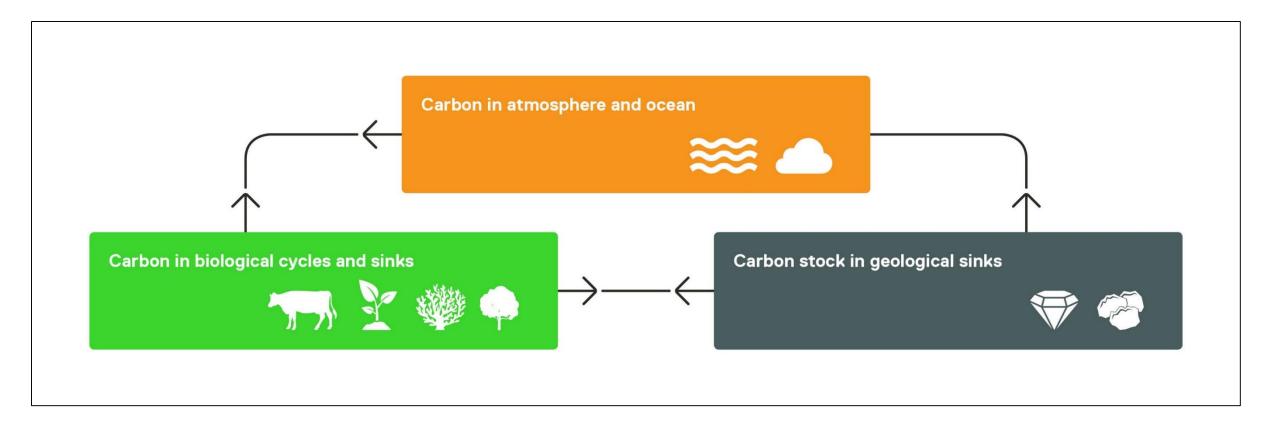
Applying a well-tested concept to fossil fuel carbon

Elements of a resource productivity approach

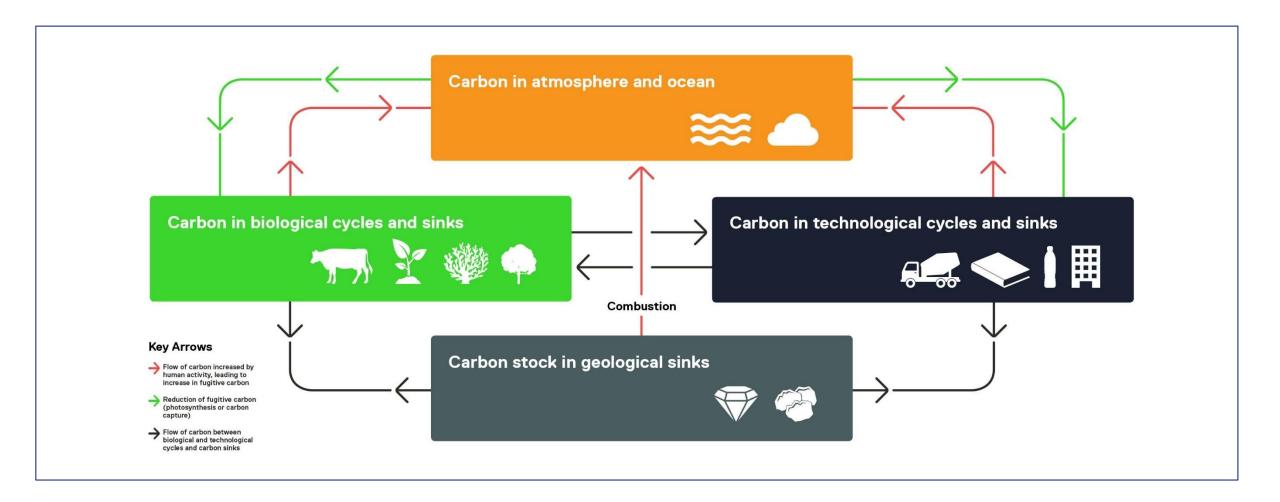
- Input-based (e.g. barrels of oil rather than emissions)
- Measures value generated per unit of resource
- Seeks to decouple value creation from resource use

Benefits

- ✓ Prioritises high value uses of a resource, or uses with high cost of decoupling
- ✓ Does not penalise business growth when measuring performance
- ✓ Takes a life-cycle view of resource use and after-use

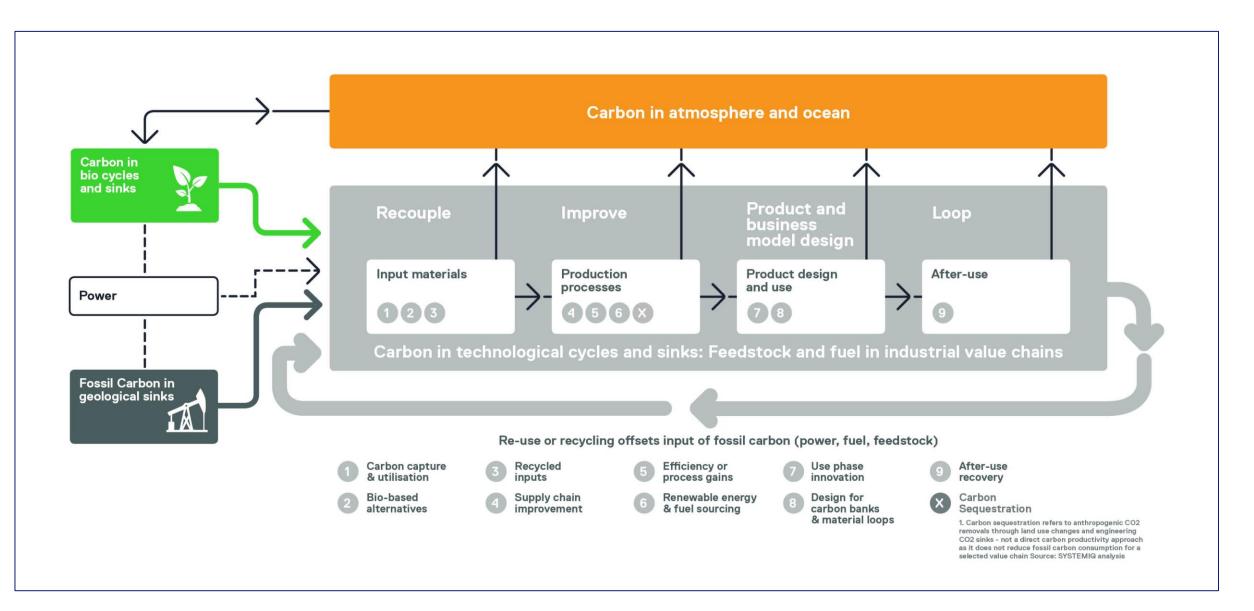

Practical application

- Assess and manage risks from dependence on scarce resources
- Anticipate market shifts towards substitute resources
- Guide and prioritise innovations for decoupling or resource efficiency


A resource productivity approach to carbon: Using the natural carbon cycle as a model (1)

The natural carbon cycle has carbon stocks and flows in balance

A resource productivity approach to carbon: The natural carbon cycle provides a model (2)


Human activities increase fugitive carbon through fossil fuel use and impacts on biological cycles

Source: Braungart and Engelfried (1992, Fresenius Envir. Bulletin) An intelligent product system to replace waste management / Also draws on McDonough (2016, Nature) Carbon is not the enemy.

Nine levers to improve carbon productivity (1)

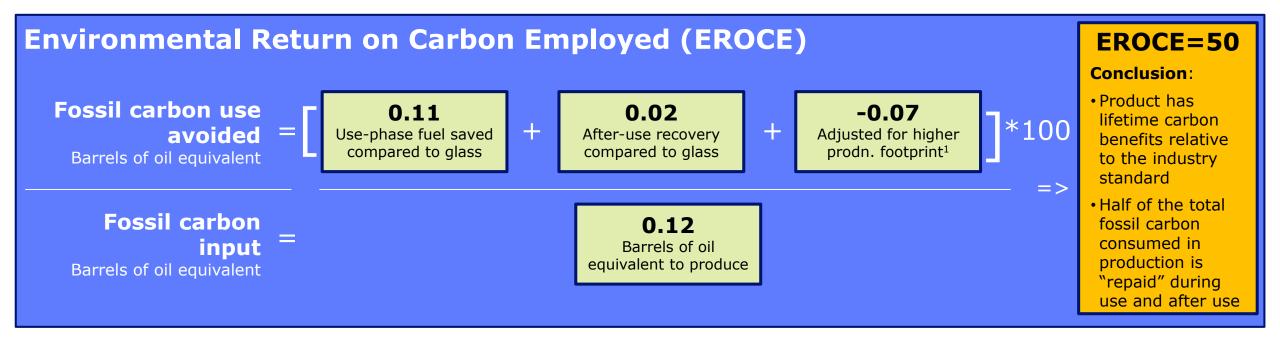
Nine levers to improve carbon productivity (2)

	Lever	Description	Examples
	Carbon capture and utilisation	Divert carbon from atmosphere or industrial waste stream into useful products (e.g. polymers, construction materials)	CCU into cement, polymers, soda ash, fuels
2	Recycled inputs	Replace virgin with recycled inputs, reducing fossil fuel required for energy and feedstock	Use of recycled metals, fibres, plastics
3	Bio-based alternatives	Substitute fossil carbon feedstock with sustainable bio- based alternatives	Bio-based plastics
4	Supply chain improvements	Improve energy and material efficiency in supply chain companies	Selection of suppliers Supplier engagement
5	Efficiency or process gains	Increase energy and material efficiency in production processes , or improve processes	Energy efficiency improvements in factories
6	Renewable energy sourcing	Increase the share of low-carbon energy in power/fuel for production	Switch to renewable electricity or bio-fuels
7	Use phase innovation	New or improved products or business models that reduce carbon emission reductions in use phase	Business models innovations; renewable energy products; energy-saving products
8	Design for carbon banks and material loops	Product and system design to enable "carbon banking" and closed material loops	More durable and long-lasting materials and products; design for re-use / recycling
9	After-use recovery	Recovery of after-use products and materials to enable re-use or recycling	Product or material take-back schemes
×	Carbon Sequestration ¹	Divert carbon from atmosphere or industrial emissions into durable sinks (e.g. sub-surface storage reservoirs, forests)	Industrial carbon capture and storage (CCS)

Collaborative methodology: Applying carbon productivity across value chains

			Input materials	Manufacturer	Retailer	Recovery and recycling
	1	Carbon capture and utilisation	\checkmark			
R	2	Bio-based alternatives	\checkmark			
	3	Recycled inputs	✓	\checkmark		
	4	Supply chain improvement	✓	✓	✓	
I	5	Efficiency or process gains	\checkmark	\checkmark	✓	
	6	Renewable energy and fuel sourcing	\checkmark	\checkmark	\checkmark	
Ρ	7	Use phase innovation – products & business models	\checkmark	\checkmark	\checkmark	
	8	Design for carbon banks and material loops	5 √	\checkmark		\checkmark
L	9	After-use recovery			✓	\checkmark

Example: Environmental return on carbon employed (polycarbonate car windscreen)


covestro

Environmental ROCE demonstrates that PC glazing has lifetime carbon benefits relative to industry standard

Polycarbonate windscreen compared to laminated glass:

- Light-weighting reduces fuel consumption by 0.11 BOE over life
- After-use recovery of polycarbonate saves 0.02 BOE
- 0.12 BOE to produce one windscreen; 0.05 BOE for glass

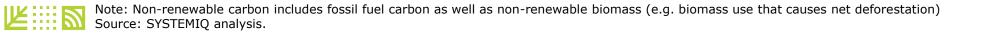
SYSTEMIQ 17

Applying "suite" of alternative carbon productivity metrics (1)

DRAFT

Application to polycarbonate windscreen (new product) compared to laminated glass windscreen (standard)

PURPOSE / APPLICATION	METRICS	CALCULATION
Measure environmental value derived from fossil fuel carbon (carbon saving in use/after-use) <i>Product life cycle</i>	Environmental Return on Carbon Employed – <u>Relative Over Absolute</u> Non-renewable carbon use avoided compared to "industry standard" (BOE) * 100 Non-renewable carbon input (Barrels of oil equiv.)	 EROCE = 50 Product has lifetime carbon benefits relative to the industry standard Half of its total fossil carbon consumption is "repaid" during use and after use
	Environmental Return on Carbon Employed – <u>Relative Over Relative</u> Non-renewable carbon use avoided in use and after-use compared to "industry standard" Additional non-renewable carbon consumption in production (Barrels of oil equiv.)	 EROCE (Relative over Relative) = 1.9 The "additional" carbon investment in making a polycarbonate windscreen, compared to the industry standard, is repaid 1.9 times during use and after-use
	Environmental Return on Carbon Employed – <u>Absolute over Absolute</u> Net non-renewable carbon consumption in use and after-use Non-renewable carbon consumption in production (Barrels of oil equiv.)	 Fossil carbon consumption for a PC windscreen in use and after-use is 2.2x production footprint; Glass windscreen is 7.8x This ratio would provide some guidance on where to target innovation / improvement activities for different products



Applying "suite" of alternative carbon productivity metrics (2)

Additional metrics are proposed for different applications and for further development

PURPOSE / APPLICATION	METRICS	CALCULATION
Measure environmental value derived from fossil fuel carbon (carbon saving in use/after-use) <i>Product life cycle</i>	Environmental Return on Carbon Employed – <u>Net Life Cycle Consumption</u> Net consumption of non-renewable carbon attributable to product across its full life cycle (production + use + after-use)	 Net life-cycle fossil carbon consumption forced by PC windscreen is 0.37 BOE Laminated glass is 0.44 BOE Net life cycle consumption of fossil carbon is 16% higher for laminated glass, compared to polycarbonate
	Environmental Return on Carbon Employed – <u>Carbon Payback Period (Relative)</u> Additional non-renewable carbon consumption in production, relative to industry standard Non-renewable carbon consumption avoided per year of use, relative to industry standard	 Time to payback the additional fossil carbon consumption required to make a polycarbonate windscreen is 7.6 years, compared to industry standard
	Environmental Return on Carbon Employed – <u>Carbon Payback Period (Absolute)</u> Non-renewable carbon consumption in production (Barrels of oil equiv.) Non-renewable carbon consumption avoided per year of use, relative to industry standard	 Polycarbonate windscreen does not repay the total carbon consumption for its production during use phase

^{SYSTEMIQ} 19

Measuring carbon productivity – a suite of metrics for different applications (3)

Additional metrics are proposed for different applications and for further development

PURPOSE / APPLICATION	METRICS	Notes	
Measure environmental value derived from fossil fuel carbon (carbon saving in use/after-use) <i>Product life cycle</i>	Environmental Return on Carbon Employed - Productivity of fossil carbon input Non-renewable carbon use avoided compared to "industry standard" (BOE) Non-renewable carbon input (Barrels of oil equiv.)	 EROCE = 150% Product has lifetime carbon benefits relative to the industry standard Half of its total fossil carbon consumption is "repaid" during use and after use 	

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission by SYSTEMIQ is strictly prohibited